Climate Change & Climate Impacts
Current climate change progression requires scientific knowledge on how to adapt agricultural production and forest management to a changing climate and on means to mitigate the human impact on stop global warming. Climate change affects crop, forest and livestock production. Concomitantly, smart agriculture and energy efficient farm management are of major relevance to ensure food security in future. Moreover, it is necessary to deal with innovative cultivation strategies, land use systems and climate protection concepts in order to further develop the agricultural and forest landscape in a sustainable manner.
Renewable sources of electricity are one of the key components in reducing greenhouse gas emissions and mitigating climate change. Agricultural Photovoltaics (Agri-PV) are an approach aiming at the dual use of fertile arable land. Only a minor proportion of a field is used for the installation of a photovoltaics construction while the major part is available for farming. There are several methods for its use: Whereas an elevated system is installed above the cultivated crop, a bifacial installation (= with double-sided solar cells) is constructed as rows in-between the crops.
In the past years, research has mainly focused on pomiculture and livestock husbandry in combination with photovoltaics. However, in the meantime further scientific and public interest lies in the use of Agri-PV in combination with cereal crop production. Researchers at TUM were engaged in initiatives concerning Agri-PV in the past. They are eager to advance knowledge about the effects of agrivoltaics on cultivation, crop growth and the ecosystem in the future.
Computational modelling science uses extensive data to predict future scenarios by modulating distinct factors potentially influencing e.g. agricultural productivity or water availability in future. The Intergovernmental Panel on Climate Change (IPCC) uses such data to advise policy makers and provide data on potential future risks and ways to mitigate those risks caused by climate change. Models themselves rely on the significance of the input data and their output entails a certain degree of uncertainty.
In 2010, the global Agricultural Model Intercomparison and Improvement Project (AgMIP) was created with the aim to foster a close collaboration between researchers, modelers, and stakeholders to improve the validity and informative value of the model output by combining different models. Based on the AgMIP approach and with the aim to create a fruitful and interdisciplinary collaboration amongst modeling experts in Bavaria, HEF engages in bringing researchers from different Bavarian institutions and distinct backgrounds at one table to create a novel research effort to advance this field of science.
Currently, the transport of agricultural goods to processing plants such as dairies or sugar factories is largely carried out with the help of conventional combustion engines. Alternative drive solutions are needed to help reduce CO2 emissions in this sector. The Chair of Agricultural Systems Engineering is therefore researching alternative drive technologies in a current project. This includes investigations on hydrogen (both direct combustion and fuel cell for electric drives), biomethane, vegetable oils, as well as battery electric drives. These different approaches are under investigation to see how they can be integrated into the logistics processes for transporting milk and sugar beets to create a more sustainable and lower-emission solution.
Lead: Prof. Heinz Bernhardt, Chair of Agricultural Systems Engineering
Duration: 10/2023 - 10/2026
Partners: Association of Bavarian Sugar Beet Growers, milch.bayern e.V., Südzucker AG
The interdisciplinary joint project Landscapes under Climate Change - Influence of management and climate change on interactions of terrestrial and aquatic ecosystems is headed by Prof. Dr. Jörg Völkel (Coordinator), PD Dr. Michael Dannenmann (Karlsruhe Institute of Technology), Prof. Dr. Jürgen Geist, Prof. Dr. Dr.h.c. Ingrid Kögel-Knabner and Prof. Dr. Michael Schloter.
Climate change influences the (nutrient) matter balance in the near subsurface, and therefore the interaction patterns between terrestrial and aquatic ecosystems in cultural and natural landscapes will change and put ecological and economic soil functions and ecosystem services at risk. C, N, P compounds play a prominent role in the search for mitigation and adaptation strategies. Changes in the metabolic balance of soils and soil-borne sediments are closely linked to changes in the microbiome. In search of suitable mitigation strategies, the project investigates these changes in the sink and source function of the C, N, P reservoirs along a climatic gradient in the Bavarian Forest near Regensburg from the montane to the colline stage within the same natural unit. Interactions between landscape and climate will be illuminated and management strategies will be developed with the aim of maintaining soil functions under climate change conditions and reducing undesirable inputs from terrestrial to aquatic systems. This interdisciplinary project combines the competences of geomorphology, soil science, microbiology, stable isotope biogeochemistry, hydrology and aquatic systems biology.
For more details view announcement here.
Climate change is one of the biggest challenges for mankind – a global problem with regional implications. Successful and sustainable climate policies are based on scientific knowledge derived from cutting edge and application-oriented research. With extensive measures for climate protection and climate adaptation the State of Bavaria aims to counteract climate change in the affected regions.
From 2016 to 2019 several projects addressed research topics relevant for adapting Bavarian crops to climate change as part of the BayKlimaFit 1 project network. Improving our knowledge how plants can tolerate changing environmental conditions was the main objective. Based on these achievements the new project network BayKlimaFit 2 will advance our knowledge and transfer it into practice improving crops for coming generations.
The project network “BayKlimaFit 2 – Strong plants mitigating the impact of climate change” is conducting research in 10 individual projects on the key topics:
- High quality and climate resilient plants
- Healthy plants under climate change
- Resource efficiency despite climate stress
The three year research project is financed by the Bavarian State Ministry of the Environment and Consumer Protection.
Further information on the BayKlimaFit project website.
Within the framework of the nationwide research project KlimAgrar the Chair of Plant Nutrition under the direction of Prof. U. Schmidhalter with the project GreenWindows 4.0 is involved. In this project, management measures for the optimisation of N-fertilisation, in particular of winter wheat and maize, are to be developed and evaluated with regard to their contribution to the reduction of GHG emissions.
More information: https://unter-2-grad.de/greenwindows.html
On behalf of the Bavarian State Ministry for the Environment and Consumer Protection, the Chair of Plant Breeding (Prof. C.C. Schön) designed the BayKlimaFit project network. The research network, which will run from 2016 to 2019, is intended to provide insights into the adaptation of crops to climate change. These findings will be an important basis for Bavaria's climate adaptation strategy. The government is supporting Verbund with EUR 2.4 million provided by the Ministry of the Environment.
Priority topics and sub-projects of the Verbund:
Waterlogging and cold - adaptation strategies for young plants to the consequences of climate change
Climate-induced heat events and drought - Stress management through metabolic adaptation
Sympionts and pests - Tolerance towards environmental stress in times of climate change
More information can be found at www.bayklimafit.de
TUM press release for the kick-off event on 14.4.2016
Unterschiedliche Landschaften wie das Voralpenland, das Ammer-Einzugsgebiet oder der Bayerische Wald prägen das Gesicht Bayerns. Diese Landschaftsökosysteme sind einzigartig , auch hinsichtlich ihrer Belastungsfähigkeit durch Klimaveränderungen.
Bodenerosion ist ein wesentlicher Teilprozess des vom Menschen gesteuerten Erdsystems. Böden sind hervorragende Kohlenstoffspeicher und damit auch Senken für das „Klimagas“ Kohlendioxid (CO2). Die Vegetation auf diesen Böden ist der „Motor“ für den Austausch von Kohlenstoff mit der Atmosphäre: von der Atmosphäre zum Ökosystem (Vegetation und Böden) durch Photosynthese; vom Ökosystem zurück zur Atmosphäre durch Abbau- und Veratmungsprozesse. Die Effizienz der Ökosysteme als „Motor“ für diesen Austausch (und somit für die Funktion der Böden als Kohlenstoffspeicher) ist wesentlich gesteuert durch die Verfügbarkeit von Stickstoff, als wichtigster Nährstoffbestandteil. Für die Böden der bayerischen Kultur- und Agrarlandschaft gilt das in besonderem Maße.
Über 8.000 Jahre Landnutzungsgeschichte haben zu einer besonders hohen Anreicherung von Kohlenstoff und Stickstoff in Böden und verlagertem Bodenmaterial geführt. Die Transportpfade und Zwischenspeicher reichen von Bodensedimenten am Fuße eines Abhangs (sog. Hangkolluvien), entstanden durch Bodenerosion im Acker- und Grünland bis zu Bodensedimenten in den Talauen der Flüsse (sog. Alluvien). In allen Flusseinzugsgebieten Bayerns sind solche Alluvien zu finden, die u.a. als Auenlehme teils mehrere Meter mächtig sind. Sie speichern große Mengen an Kohlenstoff und sind leicht erodier- und verlagerbar.
Auenlandschaften spielen zudem eine entscheidende und zukünftig steigende Rolle im Hochwasserschutz. Die Entwicklungsgeschichte der bayerischen Flussauen und der Erhalt ihrer Sedimente und Böden als Kohlenstoffsenke sind auch heute und zukünftig mit dem Kultur- und Agrarlandschaftsmanagement im jeweiligen Einzugsgebiet verbunden. Daher ist die regionale Maßstabsebene zur Ausarbeitung von Anpassungsstrategien an Klima- und Landschaftswandel von besonderer Bedeutung. Diese Anpassungsstrategien werden über das moderne Landschaftsmanagement ausgeführt und berücksichtigen nicht zuletzt auch die Nachhaltigkeitsproblematik als eines der Zukunftsthemen im Rahmen der Global Change-Forschung.
Ziel des Projektverbunds
Die Ermittlung von Kohlenstoff- und Stickstoffmobilität in Landschaften im Umbruch.
Mitglieder des Projektverbund :
- Professor Dr. Jörg Völkel, Professur für Geomorphologie und Bodenkunde, Leitung des Verbundprojekts
- Professor Dr. Ingrid Kögel-Knabner, Lehrstuhl für Bodenkunde
- Professor Dr. Hans Peter Schmid, Lehrstuhl für Atmosphärische Umweltforschung
Weitere Informationen: https://www.stmuv.bayern.de/themen/klimaschutz/forschung/projektverbund_landschaften.htm